Manipulation and Immobilization of a Single Fluorescence Nanosensor for Selective Injection into Cells
نویسندگان
چکیده
Manipulation and injection of single nanosensors with high cell viability is an emerging field in cell analysis. We propose a new method using fluorescence nanosensors with a glass nanoprobe and optical control of the zeta potential. The nanosensor is fabricated by encapsulating a fluorescence polystyrene nanobead into a lipid layer with 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran (SP), which is a photochromic material. The nanobead contains iron oxide nanoparticles and a temperature-sensitive fluorescent dye, Rhodamine B. The zeta potential of the nanosensor switches between negative and positive by photo-isomerization of SP with ultraviolet irradiation. The positively-charged nanosensor easily adheres to a negatively-charged glass nanoprobe, is transported to a target cell, and then adheres to the negatively-charged cell membrane. The nanosensor is then injected into the cytoplasm by heating with a near-infrared (NIR) laser. As a demonstration, a single 750 nm nanosensor was picked-up using a glass nanoprobe with optical control of the zeta potential. Then, the nanosensor was transported and immobilized onto a target cell membrane. Finally, it was injected into the cytoplasm using a NIR laser. The success rates of pick-up and cell immobilization of the nanosensor were 75% and 64%, respectively. Cell injection and cell survival rates were 80% and 100%, respectively.
منابع مشابه
Graphene Oxide-terpyridine Conjugate: A Highly Selective Colorimetric and Sensitive Fluorescence Nano-chemosensor for Fe2+ in Aqueous Media
A graphene oxide-terpyridine conjugate (GOTC) based colorimetric and fluorescent nano-chemosensor was synthesized. It showed high selectivity and sensitivity for Fe2+ and Fe3+ ions in neutral aqueous solution over other metal ions such as Li+, Na+, Ba2+, Ca2+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, Mn...
متن کاملA novel diethyl 2-(9-fluorenyl) malonate functionlized SBA-15 for selective optical sensing of Iron
In this study, highly ordered mesoporous silica material (SBA-15) functionalized with Diethyl 2 - (9 -fluorenyl) malonate as a flourophore is reported. The anchoring of flourophores to the hydroxyl group on SBA-15 surface was done with post synthesis method. The obtained materials were characterized by small and wide angle X-ray diffraction, N2 adsorption–desorption, Fourier transform infrared ...
متن کاملHighly Selective Fluorescent Sensing of Proteins Based on a Fluorescent Molecularly Imprinted Nanosensor
A fluorescent molecularly imprinted nanosensor was obtained by grafting imprinted polymer onto the surface of multi-wall carbon nanotubes and post-imprinting treatment with fluorescein isothiocyanate (FITC). The fluorescence of lysozyme-imprinted polymer (Lys-MIP) was quenched more strongly by Lys than that of nonimprinted polymer (NIP), which indicated that the Lys-MIP could recognize Lys. The...
متن کاملSelective Electrochemical Nanosensor based on Modified Carbon Paste Electrode for Determination of NADH in the presence of Uric Acid
The electrochemical properties of a modified carbon paste electrode with the synthesized compound of 2,2'-[1,7–heptanediylbis(nitrilomethylidene)]-bis(4-hydroxyphenol) (DHBH) and graphite nanoparticle (GN) were studied by cyclic voltammetry (CV), chronoamperometry and differential pulse voltammetry (DPV) methods. The proposed electrode shows excellent electrocatalytic activity towards the oxida...
متن کاملGene Expression under F8 Promoter Driving In Mouse Hepatoma Cells: A Step towards Gene Therapy of Hemophilia
Background and Objectives: Significant progress has been made in treatment of hemophilia. Ex-vivo gene therapy is going popular due to the capability of this method in using isogenic cells for genetic manipulation and reintroducing them into same host after proliferation. Most gene therapy techniques use viral vectors, which usually harbor a strong and non-specific promoter (e...
متن کامل